some calculations in plane geometry


This article describes some formula's in plane geometry.
They are nice applications of algebra.
List of contents: the area of a triangle
In cases where the length of the sides of a triangle are known,
but not the height, a formula for the area of the triangle without
this height would be of help.

Please look at the picture right:
the base, opposite angle A, has length a.
BD = x, so DC = a - x. AD = h.
Side b is opposite angle B, side c is opposite angle C.

There we go:
application of the theorem of Pythagoras in triangles ABD and ADC
results in two equations:
    ­­c 2 = h 2 + x 2
    b 2 = h 2 + (a − x) 2
    ­
or:
    ­­h 2 = c 2 − x 2
    h 2 = b 2 − (a − x) 2
    ­
so
    c 2 − x 2 = b 2 − (a − x) 2
and
    c 2 − x 2 = b 2 − (a 2 − 2 a x + x 2)
    c 2 − x 2 = b 2 − a 2 + 2 a x − x 2
    c 2 = b 2 − a 2 + 2 a x
    2 a x = a 2 − b 2 + c 2
    x = 
    a 2 − b 2 + c 2
    2 a
this value of x, substituted in h2 = c2 - x2 = (c - x)(c + x):
    h 2 = 
    æc − 
    a 2 − b 2 + c 2
    2 a
    ö
    ­­
    èø
     
    æc + 
    a 2 − b 2 + c 2
    2 a
    ö
    ­­
    èø
    h 2 = 
    2 a c − a 2 + b 2 − c 2
    2 a
     · 
    2 a c + a 2 − b 2 + c 2
    2 a
    h 2 = 
    −(a 2 − 2 a c + c 2 − b 2)
    2 a
     · 
    a 2 + 2 a c + c 2 − b 2
    2 a
    h 2 = 
    −((a − c) 2 − b 2)
    2 a
     · 
    (a + c) 2 − b 2
    2 a
    h 2 = 
    b 2 − (a − c) 2
    2 a
     · 
    (a + c) 2 − b 2
    2 a
    h 2 = 
    (b − a + c) (b + a − c)
    2 a
     · 
    (a + c − b) (a + c + b)
    2 a
    h 2 = 
    (−a + b + c) (a + b − c) (a − b + c) (a + b + c)
    4 a 2
This formula can be simplified with a tric.
If s is half of the circumference, than
    ( a + b + c) = 2s
    (-a + b + c) = 2s - 2a
    ( a + b - c) = 2s - 2c
    ( a - b + c) = 2s - 2b

and the formula changes to
    h 2 = 
    2 s (2 s − 2 a) (2 s − 2 b) (2 s − 2 c)
    4 a 2
    h 2 = 
    4
    a 2
     s (s − a) (s − b) (s − c)
    h = 
    2
    a
     
    \s (s − a) (s − b) (s − c)
and because tghe area A = 
a h
2
    A = 
    \s (s − a) (s − b) (s − c)
with this formula, the area A of a triangle can be calculated if the sides a,b,c
are known (but not the height).

An Example
A triangle has sides of length 7, 8 and 11.
So, s = (7 + 8 + 11) / 2 = 13.
The area O = 
\13 (13 − 7) (13 − 8) (13 − 11)
 = 27 , 928 m 2


the projection formula
Application of the Pythagoras theorem:

    a2 = h2 + (c - p)2
    a2 = b2 - p2 + c2 - 2cp + p2
    a2 = b2 + c2 - 2cp
the projection formula:
    a2 = b2 + c2 - 2cp

remark: If point D is right of B, -2cp changes into +2cp.
The reader may verify this.
p is the projection of b to c. hence the name.

Stewart's formula
P is a random point on base AB.
P divides AB in lines c1 and c2.

The formula of Stewart calculates the length of CP, if the sides a,b,c
of the triangle and the position of P are kwown.

Application of the projection formula in triangles APC and ABC :
    ­­C P 2 = b 2 + c1 2 − 2 c1 p
    a 2 = b 2 + c 2 − 2 c p
    ­
multiplication of the first line with (c) and the second with(c1):
    ­­c C P 2 = b 2 c + c c1 2 − 2 c c1 p
    c1 a 2 = b 2 c1 + c1 c 2 − 2 c c1 p
    ­
Subtract the lower equation from the upper:
    c C P 2 − c1 a 2 = b 2 c − b 2 c1 + c c1 2 − c1 c 2
    c C P 2 = c1 a 2 + b 2 c − b 2 c1 + c c1 2 − c1 c 2
    c C P 2 = c1 a 2 + b 2 (c1 + c2) − b 2 c1 + c c1 2 − c1 c 2
    c C P 2 = c1 a 2 + c2 b 2 + c c1 (c1 − c)
    c C P 2 = c1 a 2 + c2 b 2 + c c1 (c1 − c1 − c2)
    c C P 2 = c1 a 2 + c2 b 2 − c c1 c2
this is Stewart's formula:
    c.CP2 = c1a2 + c2b2 - 2c.c1.c2

the length of the median
If AP = PB then CP is the median of angle C.
For c1 = c2 and CP = Zc Stewart's formula changes into:
    c Zc 2 = 
    c
    2
     a 2 + 
    c
    2
     b 2 − c · 
    c
    2
     · 
    c
    2
    Zc 2 = 
    a 2
    2
     + 
    b 2
    2
     − 
    c 2
    4
this is the formula for the median of a triangle:
    Zc 2 = 
    a 2
    2
     + 
    b 2
    2
     − 
    c 2
    4


the bisector formula
CD divides angle C in equal parts.
First a theorem of plane geometry to get a relation
between a,b and c1,c2.

Given:
    DABC
    CD divides LC.
we prove that:
    In a triangle, the bisector divides the opposite side in parts with
    the same ratio as the sides of the angle:
      AD : DB = AC : BC
Proof:
    make BC longer
    draw AF || CD and
    EC || AB
    because of parallellism of lines:
      LC1 = LA1
      LC2 = LF
    so
      LF = LA1
      in a triangle, sides opposite equal angles are also equal, so
      AC = FC
    because of similarity of DECF and DDBC
      EC : DB = FC : BC
    because ADCE is a rhombus:
      EC = AD
    so:
      AD : DB = FC : BC
    and because FC = AC
      AD : DB = AC : BC
back to the bisector formula.

Starting with
    a
    b
     = 
    c2
    c1
we write:
    ac1 = bc2
Stewart's formula
    c C P 2 = c1 a 2 + c2 b 2 − c c1 c2
is changed into
    c C P 2 = a b c2 + a b c1 − c c1 c2
and
    c C P 2 = a b (c1 + c2) − c c1 c2
    C P 2 = a b − c1 c2
The bisector formula is
    C P 2 = a b − c1 c2
If c1 and c2 are unknown than from:
    ­­a c1 = b c2
    c1 = c − c2
    ­
we may calculate
    c1 = 
    b c
    a + b

    c2 = 
    a c
    a + b
c1 en c2 substitution into the bisector formula results in
    C P 2 = 
    4 a b
    (a + b) 2
     s (s − c)
s is half of the circumference of the triangle.
Calculations are left to the reader.

the radius of a circumscribing circle
First another theorem:
    If two triangles have a common angle, then the ratio of their areas is equal to
    the ratio of the products of their sides forming the angle.
DABC and DADE have LA in common.
    area.DABC : area.DADC = (p.AB) : (p.AD) = AB : AD
    area.DADC : area.DADE = (q.AC) : (q.AE) = AC : AE
multiplication by AC and AD:
    AB : AD = (AB.AC) : (AD.AC)
    AC : AE = (AD.AC) : (AD.AE)
so
    area.DABC : area.DADE = (AB.AC) : (AD.AE)
In the picture right, M is the middle of
the circumscribing circle of DABC.

applying the theorem of Thales:
    LDMB = 0.5*LAMB = LC
so:
    area DABC : area DDMB = (AC.BC) : (DM.BM)
but also:
    area DABC : area DDMB = (
    c
    2
     h
    ) : (
    c
    4
     D M
    )
because
    BM = R {the radius}
    AC = b
    BC = a
    AB = c
follows:
     
    a b
    D M.R

     
     
     = 
     
    c
    2
     h
    c
    4
     D M
and
    R = 
    a b
    2 h
we know that area DABC = 0.5hc, so
    h = 2*area DABC / c and
the length of radius R of the circle is:
    R = 
    a b c
    4 A
where A is the area of the triangle ABC.

the radius of inscribed circle
    2 * area DABC = ar + br + cr = r(a + b + c)
so:
    r = 
    A
    s
Remark: s is half the circumference of the triangle.

the radius of the escribed circle
The radius ra is
    ra = 
    A
    s − a
where:
    BC = a
    AC = b
    AB = c
    (a + b + c) / 2 = s
The proof is left to the reader.

Suggested exercises:

r, ra , rb , rc are the radius of the in- and escribes circles of DABC.
A is the area of DABC.
prove that:

1. A = 
\r ra rb rc

2.
1
r
 = 
1
ra
 + 
1
rb
 + 
1
rc


kissing circles
Two circles with radius r and R are placed on a line.
We derive a formula for the distance d = AB.

Application of the theorem of Pythagoras:

    (R + r)2 = d2 + (R - r)2
    R2 + 2Rr + r2 = d2 + R2 - 2Rr + r2


    d = 2 
    \R r
Suggested exercise:

In the picture above, a small circle with radius x just fits between the
line and the circles with radius r and R.

3. using the derived formula for d, prove that
1
\x
 = 
1
\R
 + 
1
\r


4. see picture right.
P is a fixed point.
A and B are randomly choosen points on the circle.
Prove, that PA.PB is a constant value.
(called: the power of P relative to the circle)

intersecting circles
Circles with radius R and r and d = MN < R + r intersect.
See picture right.
We derive a formula for the length of MP.

The picture shows
    MT = d - r
    NU = d - R
We add a point Q on line MN such, that MQ = QN.

Now
    R2 - MP2 = r2 - NP2 or
    MP2 - NP2 = R2 - r2
    (MP + NP)(MP - NP) = (d)(MQ + QP - (QN - QP)) = 2d.QP
because
    2d.QP = R2 - r2
    Q P = 
    R 2 − r 2
    2 d

    M P = M Q + Q P = 
    d
    2
     + Q P
    M P = 
    d 2 + (R 2 − r 2)
    2 d


Suggested exercise:
see picture above.
5. find also formula's for NP, TP, UP.