Algebra problemen (29a en b)


Twee logaritmische vergelijkingen.

a... x3log(x)=3............................b... x3log(2x)=6

Oplossing a.


x3log(x)=3

neem 3log ...

[3log(x)]2 = 1

of...3log(x) = 1............x=3

of...3log(x) = -1............x=1/3

Oplossing b.


x3log(2x)=6

neem 3log..........

3log(2x).3log(x)=3log(6)

Delen door 3log(6) levert

3log(2x)[3log(x)/3log(6)] = 1

3log(2x).6log(x)=1.

Bedenkend dat alog(b).blog(a)= 1............

levert dit meteen op x=3, maar ook:

3log(2x)=-1
6log(x)=-1..............x=1/6