Algebra probleem (22)
Gegeven:
x
2
y
2
+ x
2
+ y
2
- 6x - 6y + 10 = 0.
Bereken x
2
+y
2
.
Oplossing
Stel S = x + y
Stel P = xy
(x + y)
2
= x
2
+ y
2
+ 2xy
zodat
x
2
+ y
2
= S
2
- 2P
dus:
P
2
+ S
2
- 2P - 6S + 10 = 0
(P
2
- 2P + 1) + (S
2
- 6S + 9) = 0
(P-1)
2
+ (S-3)
2
= 0
P = 1; S = 3