Algebra probleem (22)


Gegeven:
x2y2 + x2 + y2 - 6x - 6y + 10 = 0.

Bereken x2+y2.

Oplossing


Stel S = x + y
Stel P = xy

(x + y)2 = x2 + y2 + 2xy

zodat
x2 + y2 = S2 - 2P

dus:
P2 + S2 - 2P - 6S + 10 = 0
(P2 - 2P + 1) + (S2 - 6S + 9) = 0
(P-1)2 + (S-3)2 = 0

P = 1; S = 3